Índice:
Definição - O que significa Deep Q-Networks?
Deep Q Networks (DQN) são redes neurais (e / ou ferramentas relacionadas) que utilizam o aprendizado profundo de Q para fornecer modelos como a simulação do jogo inteligente de videogame. Em vez de ser um nome específico para uma construção de rede neural específica, o Deep Q Networks pode ser composto de redes neurais convolucionais e outras estruturas que usam métodos específicos para aprender sobre vários processos.
Techopedia explica Deep Q-Networks
O método de aprendizado profundo de Q geralmente usa algo chamado iteração geral de política, descrita como a conjunção de avaliação e iteração de política, para aprender políticas a partir de informações sensoriais de alta dimensão.
Por exemplo, um tipo comum de rede Q profunda, coberto por publicações de tecnologia como o Medium, recebe informações sensoriais dos videogames Atari 2600 para modelar resultados. Isso é feito em um nível muito fundamental, reunindo amostras, armazenando-as e usando-as para repetir a experiência, a fim de atualizar a rede Q.
Em um sentido geral, redes Q profundas treinam entradas que representam jogadores ativos em áreas ou outras amostras experientes e aprendem a combinar esses dados com as saídas desejadas. Esse é um método poderoso no desenvolvimento da inteligência artificial que pode jogar jogos como xadrez em alto nível ou realizar outras atividades cognitivas de alto nível - o exemplo de jogo do Atari ou de xadrez também é um bom exemplo de como a IA usa o tipos de interfaces que eram tradicionalmente usadas por agentes humanos.
Em outras palavras, com um profundo aprendizado de Q, o jogador de IA fica mais parecido com um jogador humano ao aprender a alcançar os resultados desejados.