Lar Computação em nuvem O imperativo da nuvem - o que, por que, quando e como - episódio 3 do techwise

O imperativo da nuvem - o que, por que, quando e como - episódio 3 do techwise

Anonim

Eric Kavanagh: Senhoras e senhores, olá e bem-vindos novamente ao TechWise. Meu nome é Eric Kavanagh. Serei seu moderador no episódio 3. Este é um novo programa que criamos com nossos amigos da Techopedia, um site muito legal que obviamente se concentra em tecnologia e, é claro, aqui no The Bloor Group, nos concentramos bastante nas empresas tecnologia. Portanto, todos os tipos de software corporativo e todo o formato TechWise foram projetados para oferecer aos participantes uma boa visão de um espaço específico. Então, fizemos o Hadoop, por exemplo, fizemos análises no último programa e, nesse programa em particular, estamos falando sobre nuvem.


Então, chama-se "O imperativo das nuvens - o que, onde, quando e como". Hoje falaremos com alguns analistas e depois com três fornecedores. Então, Qubole, Cloudant e Attunity são os patrocinadores do programa de hoje. Um grande obrigado por essas pessoas por seu tempo e atenção hoje e um grande obrigado, é claro, a todos vocês por aí. E lembre-se de que, como participantes desses programas, você desempenha um papel significativo. Queremos que você faça perguntas, se envolva, seja interativo, deixe-nos saber o que você pensa, porque, obviamente, todo o objetivo do programa aqui é ajudar vocês a entender o que está acontecendo no mundo da computação em nuvem.


O deck imperativo da nuvem

Então, vamos seguir em frente. Primeiro anfitrião, seu anfitrião lá em cima, Eric Kavanagh, sou eu. Depois, o Dr. Robin Bloor telefonando de um aeroporto, na verdade, e nosso bom amigo Gilbert, Gilbert Van Cutsem, analista independente, também estará compartilhando alguns pensamentos com você. Em seguida, ouviremos Ashish Thusoo, CEO e cofundador da Qubole. Ouviremos Mike Miller, cientista chefe da Cloudant e, finalmente, Lawrence Schwartz, vice-presidente de marketing da Attunity. Então, temos um monte de conteúdo alinhado para você hoje.


Então, a nuvem - editado de cima - este é um conceito que me ocorreu outro dia quando eu estava pensando sobre isso. Realmente, a computação em nuvem é enorme nos dias de hoje. Quero dizer, é realmente fascinante assistir a evolução dessas coisas e um dos exemplos que eu sempre dou é na própria tecnologia de webcasting. Obviamente, aqueles que discaram cedo ouviram alguns desafios técnicos interessantes. Esse é um problema da nuvem: ela muda, os formatos mudam, os padrões mudam, as interfaces mudam e, às vezes, quando você tenta conectar duas áreas diferentes, você encontra alguma dificuldade, um problema. Portanto, essa é realmente uma das coisas com que se preocupar com a computação em nuvem. Tenha cuidado com a arquitetura! Você pode ver isso no último ponto.


Uma das coisas que fazemos, como uma observação aqui, para nosso webcast, temos um fornecedor de conferência por telefone separado. Então usamos o WebEx. Não usamos o áudio WebEx porque, francamente, uma vez usamos o áudio WebEx anos atrás e ele travava e queimava da maneira mais desagradável. Portanto, não estamos dispostos a correr esse risco novamente. Por isso, usamos nossa própria empresa de gravação de áudio chamada Arkadin e, em tempo real, juntamos todas essas soluções diferentes. E a idéia é que poderíamos enviar um e-mail para você com um aplicativo de e-mail separado com os slides, caso, por exemplo, o WebEx tivesse travado, pedimos a todos que discassem, enviamos os slides por e-mail e apenas passamos por eles mais ou menos sem o tipo de ambiente WebEx. Assim, você pode contornar esse tipo de problema, mas esse tipo de problema está em todo lugar.


Mas há muitos benefícios para a nuvem. Obviamente, é uma barreira baixa à entrada, é possível observar que o filho da computação em nuvem é o salesforce.com, é claro, que apenas revolucionou os negócios, especificamente a automação da força de vendas, obviamente. Mas você tem coisas como Marketo, iContact, Constant Contact e Sailthru e, graças a Deus, em termos de automação de marketing e vendas, existem inúmeras ferramentas, mas não é só isso. O RH está levando tudo para o jogo na nuvem, a análise está no jogo na nuvem. Veja a empresa pouco conhecida lá fora, Amazon Web Services, o que eles estão fazendo com a computação em nuvem - é enorme. E ouvi uma ótima citação outro dia de um cara com quem trabalhamos muito com David, que agora está na Cisco, na verdade, a empresa que comprou a WebEx. Não tenho certeza se eles investiram tanto quanto eu gostaria que eles investissem no WebEx, mas essa não é minha decisão, não é? Mas ele está na Cisco atualmente e tinha uma citação muito engraçada e concisa, ou seja, "não há uma nuvem, há muitas nuvens" e isso é exatamente correto. Há muitas e muitas nuvens por aí. De fato, todo provedor de nuvem é sua própria nuvem. Então, um dos desafios hoje em dia é conectar a nuvem, certo? Se você é uma força de vendas, não seria legal se conectar diretamente ao iContact e ao Constant Contact e ao LinkedIn, por exemplo, e talvez ao Twitter e outros ambientes, outras nuvens por aí apenas consertam soluções comerciais que fazem sentido para você e sua empresa.


Portanto, esses são alguns problemas a serem lembrados, mas a nuvem chegou para ficar. Apenas saiba que, sobre isso, o software local chegou para ficar. Então, o que temos que descobrir na empresa ou em qualquer empresa de pequeno e médio porte, como você define sua arquitetura e a mantém de forma que possa aproveitar a nuvem sem criar um gigante em outro lugar fora do seu controle? Portanto, obviamente, todo o setor de data warehousing evoluiu em torno da necessidade de consolidar informações críticas para analisar essas informações e tomar melhores decisões.


Bem, agora o Amazon Web Services tem Redshift. Esse foi um dos maiores webcasts que já fizemos foi com o Redshift. Isso é um grande negócio. Eles estão mudando a dinâmica, estão mudando as estruturas de preços. Você pode observar como os preços caem no licenciamento tradicional de software corporativo, em parte por causa da computação em nuvem e em parte porque essas pessoas estão por aí reduzindo o preço, pressionando o preço. Então, isso é uma boa notícia para os usuários finais. É algo que você deve ter em mente, certamente, para qualquer pessoa que esteja tentando usar algumas dessas tecnologias. Então, é algo a ter em mente e falaremos sobre isso hoje no programa.


Então, o analista Dr. Robin Bloor será nosso primeiro analista do dia. Então, eu vou em frente e empurro seu primeiro slide e entrego as chaves para ele. Robin, acho que você está aqui em algum lugar, aí está. E com isso eu vou entregá-lo, e o chão é seu!


Dr. Robin Bloor: Ok, Eric. Obrigado por essa introdução. Me deparei … alguns dias atrás, me deparei com uma pesquisa de consumidores, na verdade, que fazia a pergunta - você acha que o clima de tempestade interfere na computação em nuvem? E mais de 50% deles disseram que sim. Eu apenas pensei que eu deixaria você saber que não, se você é um daqueles que acreditam nisso. E então, é como acreditar que, quando você tem neve na televisão, é porque está nevando lá fora.


Nuvem, você sabe, uma das coisas é que você sabe, um detalhe importante, se você gosta, simples da nuvem é que a nuvem é realmente um data center de uma maneira ou de outra, ou qualquer serviço em nuvem específico é um data center. A única coisa é que é um data center diferente do que a nuvem tradicional. Então, eu ia falar em uma visão geral sobre a nuvem, para que, como seu backup, entrasse em mais detalhes sobre o uso da nuvem, porque não fazia sentido cobrir o mesmo terreno.


Então, o primeiro tipo de argumento que eu gostaria de destacar é que a nuvem é um serviço, sabe? E uma das coisas que realmente está acontecendo por causa da computação em nuvem é que existe … bem, eu chamo a morte de marcas, toda uma série de marcas de software tinha muito poder e continua a ter poderes em computação corporativa. Quando você chega na nuvem, eles não têm mais muito poder, sabe? Quando você compra um serviço em nuvem, se preocupa com o aplicativo, é claro, se preocupa com o nível de serviço que a nuvem fornecerá, não deseja que o serviço falhe com frequência, se preocupa com o custo de uso e se preocupa com eles coisas porque este é um serviço, mas o que você mais não liga é que você não liga mais para o hardware em que está executando, você não liga para o que é a tecnologia de rede, você não liga para o sistema operacional está em execução é que você não se importa com o que são os sistemas de arquivos, nem se importa com o que é o banco de dados e que é realmente usado especificamente por qualquer serviço de banco de dados fora da nuvem, sabe? E o impacto disso, de certa forma, é que a nuvem é uma enorme quantidade de marcas de software que não têm valor real na nuvem porque, você sabe, você entra na nuvem de uma maneira ou de outra por algo que é um serviço e não mais um produtos. Então, pensei em fazer alguns slides de razões para não usar a nuvem, você sabe, e estas são todas, se você gosta, de razões simples, óbvias, mas alguém tinha que indicá-las, então, eu pensei que sim.


Portanto, razões para mim … não usar a nuvem - se elas não podem fornecer o tipo de controle de dados e processos que você deseja, você sabe, então simplesmente não atende aos seus critérios. Se eles não puderem fornecer o desempenho desejado, não atenderá aos critérios. Se a nuvem oferece flexibilidade em termos de como você pode mover coisas, ela não atende a um critério. Essas são apenas razões óbvias pelas quais serviços em nuvem específicos não serviriam para muitas pessoas, além da computação corporativa.


Você não pode fazê-lo porque pode fazê-lo mais barato. A nuvem nem sempre é a opção mais barata. Algumas pessoas parecem pensar que, por ser uma opção barata, sempre será mais barata, nem sempre é mais barata. E a outra coisa é que, se você está recebendo um aplicativo de uma nuvem, ele não se integra bem ao que está fazendo, provavelmente você não o seguirá em frente e essas são, você sabe, razões para se afastar .


Aqui estão as razões para adotar. Você sabe, uma das coisas que você pode fazer na nuvem, praticamente à prova de balas, é a atividade de prototipagem. Se você pode criar um protótipo na nuvem e implementar no data center, é totalmente viável e há uma grande quantidade de pessoas fazendo isso. Você pode fazer o upload do trabalho do datacenter com aplicativos não críticos, porque provavelmente eles poderão encontrar algum tipo de serviço em nuvem que atenda seu nível de serviço às coisas não críticas. E você pode fazer upload de aplicativos específicos, como salesforce.com, e ofertas semelhantes àquelas que você conhece, aplicativos padrão. Todo mundo tem uma capacidade nessa área e o campo não é especializado e, você sabe, o tradicional … o que quer que esteja disponível na nuvem provavelmente será o que você escolhe.


Então, a última coisa que eu queria dizer é realmente interessante, quando você realmente procura a nuvem, uma maneira de entender é como uma série de economias de escala. O ponto principal é que, você sabe, executando um data center por aí e você vai discar para esse data center de um lugar ou de outro e usá-lo; portanto, seria melhor, seria melhor que fosse mais barato do que se você mesmo faz. Então, você sabe, é realmente tudo sobre economias de escala.


Os provedores de nuvem escolhem a localização do data center e o melhor local para localizá-lo fica ao lado de uma estação de energia e, principalmente, ao lado de uma estação de energia barata. Então, uma usina no norte que é hidrelétrica ou algo assim. Normalmente é o mais barato, sabe? Na verdade, você pode localizar o data center e descobrirá que é mais fácil. É mais barato contratar pessoas nesses locais do que no centro de Nova York ou São Francisco. Você pode padronizar toda a instalação em termos de ar condicionado e energia. Isso economizará muito, porque significa que você pode criar um edifício inteiro para isso e é exatamente isso que todos os operadores de nuvem fazem. Eles padronizam o hardware de rede, padronizam o hardware do computador que usam, normalmente placas x86 comuns, geralmente montam eles mesmos. Então, alguns até estão construindo tudo. Eles usarão o software da Amazon que puderem, porque na verdade não significa nenhum custo para adotá-lo. Eles padronizarão em todos os softwares. Portanto, eles nunca atualizarão nada, exceto para atualizar tudo de uma vez. Eles organizarão o apoio. Portanto, eles estarão prestando suporte a vários provedores diferentes que apenas têm suas próprias instalações de suporte. Eles terão capacidade de expansão e expansão no sentido de que estarão executando mais do que você jamais executaria esse tipo de serviço e monitorarão seu uso de uma maneira que a maioria dos data centers não pode, porque estão executando apenas um serviço padronizado, mas a maioria dos data centers está executando uma série de coisas. E é disso que trata a nuvem, realmente, e que, de certa maneira, pode definir se lhe interessa ou se não interessa para nenhum aplicativo em particular. Então, meu tipo de regra geral é que, onde as economias de escala são possíveis, a nuvem assume o controle mais cedo ou mais tarde. Mas, a maneira como inovação e flexibilidade e coisas muito específicas que você segue não podem. A nuvem sempre será a segunda melhor.


OK. Deixe-me devolvê-lo a Eric ou a Gilbert.


Eric Kavanagh: Ok, Gilbert, vou dar as chaves aqui para o WebEx. Modo de espera. Basta clicar em qualquer lugar desse slide e usar a seta para baixo no teclado.


Gilbert Van Cutsem: Eu acho que estou no controle.


Eric Kavanagh: Você está no controle.


Gilbert Van Cutsem: Tudo bem. Aqui vamos nós. A nuvem é imperativa - o céu é o limite, é uma lenda urbana ou o que você acha disso? Estas são apenas algumas palestras e coisas a considerar.


Primeiro, da frente "o quê", como todos sabemos, não acho que alguém esteja duvidando disso. A SaaS-ification veio para ficar porque o software nunca morre, ele simplesmente se move para a nuvem, certo? Acho que disse isso antes na edição anterior. Oh não, ou Eric disse isso para mim em uma edição anterior. E acho que o motivo óbvio, e isso também remonta a Robin, é que, no lado corporativo, o cronograma corporativo é bastante fácil. O CMO sempre precisa de tudo e agora. Então, ele está prestes a lançar no mercado. Tão triste, é uma boa desculpa para isso de certa forma para ele. O CIO, no entanto, está um pouco nervoso com SaaS e nuvens porque, você sabe, todo o problema de elasticidade significa que o que sobe também deve diminuir. Você deve estar pronto para expandir, mas também para reduzir. Então, ele está um pouco nervoso com isso. O CFO não está nervoso, nem mais do que o habitual, mas ele diz: "Ei, isso é … quanto isso nos atrasará?" É a infame despesa de capital versus a discussão do OPEX. É bem antigo, mas é muito, você sabe, muito importante neste mundo. E então, por último mas não menos importante, é o CEO, é claro. Ele diz, "Oh! Mitigação de risco! Gente, vocês estão todos animados, mas estamos prontos para isso?" Porque risco é o que ele pensa.


Então, qual é o risco? Apenas alguns pensamentos, certo? Estamos lidando aqui com liderança de pensamento, mas em um caminho inacabado, porque tudo isso é algo bastante novo, algo bastante recente. Na verdade, não temos muitos pontos de dados, se você pensar sobre isso. E assim, nós também, do lado do risco, temos que lidar com a integração, você sabe, as pessoas que assinam acordos dizem: "Sim, é isso que queremos, o caminho a seguir", elas se inscrevem, mas depois isto não é suficiente. Você sabe, você tem que embarcar nas pessoas e isso, lembra dos filmes? De volta à tradução, isso é um pouco do que é a integração. E também, como Robin acabou de dizer, você sabe, no local não está necessariamente indo embora imediatamente. Então, você precisa integrar os dois mundos. É um mundo híbrido. E então, como você vai fazer isso? É 80-20, a regra 80-20 Pareto, está tudo bem? Isso é bom o suficiente? E então o lixo entra / sai quando você conecta os sistemas. Tudo bem? Isso é durável? Porque, você sabe, você irá migrar, mapeará sua empresa para o sistema raiz, como fará isso? E a última, que eu acho extremamente importante, são as arquiteturas multitenantes, o que significa que a privacidade dos dados em seus próprios dados, às vezes chamada de "próprios seus próprios dados", se torna muito importante, sabe? Cem pessoas usando o mesmo sistema, um banco de dados fica abaixo do sistema, quem verá meus dados? Só eu, certo? Você tem certeza absoluta disso? Privacidade de dados, segurança de dados ajuda especialistas. Se você é o CIO, ele traz de volta o "I" para o CIO, porque agora você é responsável pelas informações. Isso é bem interessante se você é um CIO.


Então, vamos falar um pouco sobre o "porquê". Então, a intenção estratégica de tudo isso é muito, muito simples, eu acho. Se você é assinante, há pressão no mercado. Se você é um provedor, há pressão competitiva. Se você tem colegas, há pressão dos colegas. Se você é assinante, é apenas a psicologia do mercado. Todo mundo quer ir para a nuvem, SaaS ou o que você quiser, SaaS em nuvem, todos nós precisamos e queremos ir para lá. E o motivo é geralmente financeiro. Essa é a razão óbvia, mas se você pensar no aspecto financeiro, entrará no que eu chamo de paradoxo da conta versus orçamento. Você vai fazer uma assinatura, sistemas tudo o que você pode comer, US $ 50, US $ 500 por mês ou algo assim, ou você sonha com o uso com base, de modo a pagar apenas pelo que realmente usa? E então, como isso vai funcionar, baseado no uso, baseado no consumo? Você vai medir tudo isso? Provavelmente não vai acontecer imediatamente. Então, você terminará com um mecanismo híbrido, ou seja, pago 200 por mês e talvez ocasionalmente 500, porque tenho que pagar pelo consumo extra. Retainer Plus, provavelmente está indo, na minha opinião, o caminho a percorrer.


Mas há também algo que chamo de intenção oculta na frente ampla e acredito que, você sabe, isso é absolutamente real. É a mudança de controle, é o CIO versus o CMO, a mudança de poder ou a disputa de poder entre o CMO: "Quero tudo e quero agora", e o CIO, que diz: "Ei, isso é tudo Eu costumava correr, há 20 anos, era tudo sobre sistemas de hardware. Dez anos atrás era sobre aplicativos. Hoje, é tudo sobre dados. E como eu sou o CIO - informações - é tudo sobre eu. Eu estou no controle. " Então, esse é o tipo de mudança ou luta pelo poder que acredito que está ocorrendo agora entre esses dois, o CMO e o CIO.


Portanto, no final, tudo é tão jovem que ninguém sabe realmente se estamos no tipo de ambiente inovador ou no tipo de ambiente que adotou cedo. Acredito que estamos no ambiente de adotantes iniciais, não na maioria inicial, apenas no adotante inicial, mas, você sabe, meio que no meio. E então, para o cliente, o usuário final, o assinante, trata-se de obter uma vantagem porque o CMO quer a vantagem, certo? E, portanto, é importante não acabar com o que chamamos de retornos decrescentes. O avanço limitante pode levar a retornos decrescentes. É por isso que é extremamente importante, você sabe, encontrar, confiar nas partes que podem garantir que um ponto único de falha não seja um problema e que a segurança dos dados seja respeitada. Portanto, será necessário um pouco de gerenciamento de alterações. E então, no final - quase pronto, este é o último slide - como vamos fazer isso? Como a mudança para a nuvem, a mudança para o SaaS será, você sabe, perfeita e fácil? Bem, fazendo duas coisas: prestar atenção - provisionar - realmente importante e integrar, ainda mais importante.


Eric Kavanagh: Tudo bem …


Gilbert Van Cutsem: E nesse caso, o céu é o limite. Obrigado.


Eric Kavanagh: Sim. Isso foi ótimo. Eu amei as idéias muito provocantes, eu gosto do jeito que você meio que quebrou tudo isso. Eu acho que isso faz muito sentido. E vamos em frente e empurrar o primeiro slide de Ashish e eu entregarei as chaves do WebEx para você, Ashish. Okay, vá em frente. Basta clicar em qualquer lugar desse slide e usar a seta para baixo no teclado. Ai está.


Ashish Thusoo: Tudo bem. Obrigado, Eric. Oi pessoal, aqui é Ashish e vou falar sobre Qubole. Portanto, apenas para começar, Qubole, ele essencialmente fornece big data como plataforma de serviço. É uma plataforma baseada em nuvem, hospedada na nuvem Amazon e Google e fornecemos tecnologias como Hadoop, Hive, Presto e várias outras sobre as quais falarei, tudo de uma maneira chave na mão para que nossos clientes possam essencialmente sair da toda a confusão no mundo da infraestrutura de big data ou deixar de executar uma infraestrutura operacional e realmente se concentrar mais nos dados e nas transformações que eles desejam fazer nos dados. Então, é disso que se trata o Qubole.


Em termos de benefícios tangíveis, uma maneira de pensar sobre o Qubole, é claro, é uma plataforma de autoatendimento pronta para análise de big data e integração de big data criada em torno do Hadoop, mas, mais fundamentalmente, o que ele faz é que, você sabe, para todos os mecanismos de big data, como Hadoop, Hive, Presto, Spark, Chartly e assim por diante, ele traz todos os benefícios da nuvem para esses mecanismos de big data e alguns dos principais manifestos que traz do a perspectiva da nuvem é, você sabe, tornar a infraestrutura adaptável e, ao adaptar, quero dizer, tanto ágil quanto flexível às cargas de trabalho executadas em qualquer um desses mecanismos, além de tornar esses mecanismos muito mais self-service e colaborativos, no sentido de que, você sabe, o Qubole fornece interfaces nas quais você pode usar essas tecnologias específicas, não apenas para o seu desenvolvimento ou para tarefas orientadas ao desenvolvedor, mas mesmo seus outros analistas de dados também podem começar a obter os benefícios dessas tecnologias em um autoatendimento interface.


Nós sabemos muito sobre esse particular, você sabe, webinar, essa é uma das nossas perspectivas sobre quais benefícios da nuvem que o Qubole traz para o big data. Portanto, se você fizer uma comparação entre como você executa, digamos, o Hadoop e permitir que ele seja carregado em uma configuração no local, em um local, você sempre estará pensando em termos de clusters estáticos. Nos clusters, você pode dimensioná-los para seu uso máximo e mantê-los lá e, se precisar alterá-los, precisará passar por todo um processo de aquisição, implantação, teste e assim por diante. O Qubole muda que, ao criar clusters completamente sob demanda, nossos clusters são completamente elásticos, usamos os objetos armazenados na nuvem para realmente armazenar dados e os clusters aparecem e, você sabe, eles surgem com base na demanda gerada por os usuários e eles desaparecem quando não há demanda. Portanto, isso torna a infraestrutura muito mais ágil, flexível e adaptável às suas cargas de trabalho.


Outro exemplo de flexibilidade é que, hoje, você pode ter criado seus clusters estáticos aqui, com uma certa carga de trabalho em mente e se suas cargas de trabalho mudarem e sua infraestrutura agora precisar ser atualizada, talvez você precise de mais memória em suas máquinas e coisas assim. Novamente, você sabe, fazer isso na nuvem através do Qubole, por exemplo, simplifica isso. Você sempre pode alugar novos tipos diferentes de máquinas e, você sabe, obter clusters, clusters de 100 nós em funcionamento em alguns minutos, em vez de semanas nas quais você teve que esperar pelo Hadoop no local.


A outra coisa importante na qual o Qubole se diferencia do local é que o Qubole é essencialmente, como uma oferta de serviço, portanto, todas as ferramentas e a infraestrutura necessárias para integrar o serviço, você não precisa … onde quer que você esteja no local, é basicamente o software, você precisa executá-lo, integrar você mesmo e fazer todos esses benefícios; todos os benefícios do modelo SaaS são uma pista para, como você sabe O Qubole oferece big data em vez de executar o Hadoop no local sozinho.


Este slide geralmente cobre nossa arquitetura. Obviamente, somos baseados na nuvem, armazenamos nossos dados em objetos na nuvem, nuvem do Google e Google Compute Engine ou Amazon Web Services. Tomamos todos os projetos do ecossistema do Hadoop e, em torno disso, desenvolvemos o IP principal em torno do dimensionamento automático e do autogerenciamento, fizemos muitas otimizações de nuvem para fazer com que essas tecnologias de componentes funcionem realmente bem na nuvem, pois, como você sabe, a infraestrutura de nuvem é muito diferente de apenas executar coisas no bare metal e um monte de conectores de dados para permitir que os dados sejam movidos para dentro e para fora desta plataforma. Então, isso compara a plataforma de nuvem e permite que, você sabe, essa é uma chave … o principal recurso é como fazer todo o autoatendimento para que você não precise ter uma experiência forte … temos uma presença operacional muito grande durante a execução, mas, junto com nosso ambiente de trabalho de dados, associamos se são ferramentas para analistas, se são ferramentas de governança de dados, se são ferramentas de modelagem e assim por diante, para que você pode trazer os benefícios dessa tecnologia, não apenas para os desenvolvedores, mas também para outros usuários comerciais e empresariais. E, é claro, associamos também essa plataforma de nuvem a ferramentas que vocês já devem estar usando, sejam elas ferramentas de utilização ou apenas o Tableau ou se estão usando, você sabe, mais tipos de produtos de armazenamento de dados, como Redshift e e assim por diante.


Hoje, o serviço está sendo executado em larga escala; processamos quase 40 petabytes de dados todos os meses agora em nossa base de clientes. Nossos clusters variam em tamanho de clusters de 10 nós a 1500 nós e, você sabe, em termos da escala de escala que podemos processar e, em geral, até onde eu sei, corremos provavelmente alguns dos maiores clusters na nuvem no que diz respeito ao Hadoop e processamos cerca de 250.000 máquinas virtuais em um único mês em nossos clusters. Lembre-se, nosso modelo é de clusters sob demanda, que traz enormes benefícios em termos de redução de suas cargas de trabalho operacionais, além de melhorar suas e assim por diante.


Finalmente, você sabe, um dos nossos, você sabe, é apenas uma amostra de como o Qubole se transformou em várias empresas. é um exemplo do nosso cliente. Eles já estavam na nuvem, estavam executando o Elastic MapReduce na nuvem, por exemplo, e o uso de dados lá era bastante restrito. Eles teriam cerca de 30 usuários que poderiam usar essa tecnologia. Com o Qubole, eles foram capazes de expandir isso para mais de 200 usuários na empresa, que viram expansão de casos de uso de big data e trouxeram realmente, você sabe, o que chamamos de definição de plataforma ágil de big data e que tornou-se realmente central para muitas de suas cargas de trabalho de análise.


Então, apenas para encerrar, você sabe, essa foi uma breve cartilha sobre o Qubole. Essencialmente, nossa visão é como tornamos as empresas muito mais ágeis em relação a big data e, essencialmente, aproveitamos os benefícios da nuvem e as levamos a usar tecnologias de big data em torno do Hadoop, para que nossos clientes possam aproveitar esses benefícios de agilidade e esses benefícios flexibilidade e os benefícios da natureza de autoatendimento na nuvem para se tornarem muito mais eficazes para suas necessidades de dados. Então, eu vou parar por aí e entregá-lo de volta para Eric.


Eric Kavanagh: Tudo bem. Parece ótimo e agora, entrego a Mike Miller, da Cloudant. Mike, estou passando as chaves para você agora. Basta clicar no slide, aqui está. Leve embora.


Mike Miller: Parece que eu tenho as chaves. Então, vou me desculpar. Perdi … acho que esqueci de enviar algumas fontes com a minha apresentação. Então, espero que você possa olhar além disso e imaginar que é lindo. Mas sim, isso é divertido. Tenho uma longa lista aqui, coisas provocativas que ouvi que anotei e estou ansiosa para retornar a você no painel. Então, vou tentar resolver isso rapidamente.


Então, eu vou começar por Cloudant. Cloudant é um banco de dados como serviço, nosso provedor de nuvem e, na verdade, eu nem tenho o novo logotipo. Fomos adquiridos pela IBM há pouco tempo. E assim, estamos … vou falar sobre nosso serviço e focar particularmente em tentar tornar nossos usuários e clientes ágeis de uma maneira bastante diferente da do orador anterior.


O Cloudant fornece banco de dados como um serviço e outros serviços relacionados a dados para pessoas que constroem aplicativos. Portanto, nos envolvemos diretamente com os desenvolvedores e nos concentramos em dados operacionais ou OLTP, em contraste com as análises que ouvimos de Ashish anteriormente. E o ponto é realmente, todo o valor do Cloudant, que pode ser dividido em ajudar nossos usuários a fazer mais e, assim, criar mais aplicativos, crescer mais e dormir mais. Falarei sobre eles em detalhes, mas a idéia geral aqui é que, se você é um usuário, você sabe, está em uma empresa comercial, está criando um novo aplicativo, adicionando um recurso ao aplicativo ou à Web existente startup móvel, você deve se concentrar em sua competência principal. E anteriormente, talvez até uma década atrás, a TI deveria ser um diferencial, você sabe, concorrência, desculpe, dano competitivo, mesmo executando um banco de dados bem para ser uma vantagem competitiva. Aliviado que esses dias acabaram! E assim, a maneira como realmente tentamos trabalhar com nossos usuários é incentivá-los a usar serviços compostos, modulares, reutilizáveis ​​e composíveis, com a ideia de que reduz o tempo de marketing e aumenta a escalabilidade. E a idéia geral aqui é que a nuvem não é apenas, você sabe, algo novo sendo lançado para os usuários, é realmente um mercado … é uma evolução do mercado porque a maneira como as pessoas criam aplicativos, consomem aplicativos, os dispositivos nos quais estão executando e a escala dos dados muda radicalmente nos últimos 5 a 10 anos. Isso realmente enfatizou a arquitetura de aplicativos existente para a criação de aplicativos, além de apenas lidar com as cargas de trabalho de dados e análises offline. E assim, abre todo um fluxo de oportunidades.


Portanto, o Cloudant é um banco de dados distribuído como um serviço e, acredito, foi único, desde o início, que ele realmente incluiu uma estratégia móvel desde o início, e falarei sobre isso em detalhes, mas a idéia é que, agora, a criação de aplicativos, você não está escrevendo apenas para uma única plataforma, certo? Você está escrevendo para algo que eu possa executar em escala de petabyte na nuvem, ele também deve ser capaz de funcionar sem problemas em um desktop ou em um navegador e cada vez mais estamos vendo coisas, precisamos executar em um dispositivo móvel ou um dispositivo semi-conectado ou dispositivo vestível ou algo que chamamos de IOT. Então, acho que aplicativos que podem lidar bem e alavancar esses diferentes clientes são incrivelmente competitivos no mercado, e o que tentamos fazer é simplificar a criação de APIs simples no modelo de programação único para as pessoas. manipular dados em todos os dispositivos diferentes que têm uma escala muito diferente. O interessante é que, você sabe, a adesão inicial à Web e aos dispositivos móveis, é aqui que vimos nossa grande subtração, mas mesmo agora antes da aquisição, estamos vendo um número cada vez maior de usuários corporativos, mesmo em coisas como o que eu digo como conservador as fidelity investments, right, working with a virtual building, a virtual safe deposit box. So, I think that this market is actually taken off much faster than even we had expected.


Let's talk about cloud and a little bit more and then turn it over. The idea here is that we really make it easier for you to build more and use a service like Cloudant to store the database state of your application and then move that to your different devices and keep things in sync and start contrast on how you build application, traditional stack or you have to buy servers like we heard about before, where you have to provision those and install license things. With Cloudant, we try to make easy. All the data that you will need, all the search services, database, etc. for your application can be acquired by signing up and getting a single endpoint URL and then starting to use that URL. The idea being that, that is a service that uses multiple indexes, some multiple technologies underneath, some proprietary and many open source, but we use them together in a way that the end developer or product team needs to build something. And so, database analytics, very different than they did it in inception where you would have, you know, rows and columns to store business ledgers, now we need to start JSON documents that generally happens over HTTP or using existing open-source APIs and then finally, we give you the things that database should do like a primary index and secondary indexes for, you know, retrieval and LTT and then driving application logic. But in addition, there is a wide range of things like search, geo-special and replication between devices that are very important. So, that's all provided underneath our API.


But, the really distinguishing thing that allows our users to grow and, for instance, why Samsung was one of our earliest and biggest customers is that, you know, Cloudant now is underneath cluster. Each cluster shares enough architecture of three to hundreds of nodes, but we run those in over 35 data centers now globally so that there is always a place for you to store your data within a millisecond of any other cloud provider or most existing data centers. So, one of the big early things that we are challenging in the cloud as well, is how do I split a hybrid architecture for my application service maybe here and my database servers maybe someplace else that will never work. They have to be on the same machine or in the same place. Well, the reality now is that by cobbling together different cloud providers, and this is something that we still do as an IBM company, you can make sure that your database is always within a millisecond of any other place and we take care of the peering agreements and just take down with the cost off the table, something that we worry about. So, Cloudant is really a database as a service, but you can think of it more like a CDN like for your database for data that changes, you know, on millisecond time scale.


And really, finally, I think the major selling point is if you build an application that's successful, you have to decide as an organization whether or not if you want to then grow the 24x7, 365 globally distributed, you know, operation team that it takes to run that at the large scale to whether that's something that now is commoditized as well. And so we focus very heavily on helping on-board new users and new customers and help them make the jump to the cloud and build architectures that use cloud analysts and works everything in a very coherent and scalable way so that is the end, you know, our users focus on building applications and not on surviving their own success.


And with that, I will just say thanks, skipped over some slides that were skipped and I will turn it back over to Lawrence.


Eric Kavanagh: That is fantastic. So, Lawrence, let me hand you the keys to the WebEx here. Just give me one second. There you are. Keys being transferred. Just click on that slide anywhere and use the down arrow.


Lawrence Schwartz: Great! Well, thank you for the handover and, you know, thanks to all the presenters today. Nice way to set everything up and there will be a lot of things to talk about it as I get through with the presentation here. So, again, I am Lawrence Schwartz. I run marketing over at Attunity and, you know, want to talk about some of the issues that we see and then some of the challenges in the space that we are in.


So, a quick overview and introduction to Attunity as a company and who we are. We focus on moving data. So, we talk about moving any type of data anytime, anywhere and enabling that for users. We are a public company based out of the Boston area, or near Boston, and when we talk about the cloud, we have some great relationships, we are part of the AWS network, a big data integration partner, and we have been close to them since the launch of their Redshift, even working with them before that. We have gotten some nice recognition for the work that we have done and as a company, we are in over 2000 places use Attunity, and we are in half of the Fortune 100 companies. So, we got some good experiences.


As you can see on kinda of the bottom of the slide here, a big issue is you've got data that's generated from all different types of sources these days from traditional, you know, CRM systems, all different places on the Internet, all the different places where data could start and then it has to go to places to be analyzed, to work with and to be looked at and we spoke if, you know, getting the data, you know, where it needs to be. So, I am gonna talk about our solutions that we do specifically on the cloud and when you think about that, often times the data, we have somewhere on-premise. So, besides having relationships with places like Amazon, we have very close working relationships with places like Teradata, Oracle, and Microsoft, all the places where data traditionally existed on-premise.


So, when you think about this, you know, and I think it was Eric who, you know, talked about on-boarding is the key to the whole process, right? I have been thinking about the issues to getting data on a system. Now, we are just some of the bottlenecks that exist today and when you look at the people moving data into a data warehouse or a database and to the cloud, we can see a lot of time is spent on what's called the ETL process, the extraction, transformation and loading of the data from where it resides to where it needs to go. If you think about getting the value on the data, that's not where you want to be spending your time and efforts, that's not the most productive area for a data scientist. And the flipside to that is this - very few people who are very satisfied with that process. It's no less than 20 percent. We really find that to be a big process. So, there is the real kind of painpoint bottleneck, if you will, in getting to the cloud and doing that type of on-boarding that people need to do and there's even, you know, real performance issues, you know, you could look at how do you get stuff into the cloud and if you want to get, you know, a couple of terabytes into the cloud, you could certainly ship it to the cloud and there are still places that do that with larger data sets, or a lot of the traditional methods, just don't have the performance to get their to do that. So, it's a real, you know, painpoint in the marketplace as people think about how do they get and how do they move onto the cloud.


So, if we step back in and look at what that means or why that's there and, you know, how this has come about, you know, both Eric and Gilbert talked about the fact that, you know, the data that's on there today, that exists today, you know, on-prem is here to stay, you know, cloud is here to stay. So, that integration becomes all the more important and often times, people fall back on the tools that they have to move over data. Again, there is a lot of ETL or traditional tools out there to kinda move data over in batches, but there's a lot of issues with that. People find that traditional ways of moving data are very time and resource intensive to set up. They often require a lot of scripting, even if they are autonomous in some way, a lot of people, a lot of manpower. There's so many sources and targets, particularly on-premise today to move it into the cloud, you know, all the systems I mentioned earlier, Oracle, Microsoft, Teradata, some managing that whole part of it. And then, you know, looking at the performance as it moves over, being able to have the tools to make sure everything is building quickly, there is a lot of thought systems that exist today aren't well built for that.


And then lastly, a lot of the way people think about moving data is kind of done in the batch process and if you are thinking about trying to do more in real time, that's not the most effective way, kind of using stale data that's not interesting to the organization. So, when you look at what Attunity does in this stage and how we think about it is, it's a different architecture that we are focused on, we really built this from the ground up and thought about when you have to go from Pentaho open-source database out to the cloud, how do you make sure that it's very easy and straightforward to do? So, that requires rethinking, how you do the monitoring and kind of set up for. It's making the whole thing just kind of a couple of clicks to get started. It's really thinking about the movement and optimizing the performance over the channel and working with just a wide variety of platforms because a lot of big organizations kinda have the best degree approach and a lot of different types of databases or data warehouses are ready in their environment. So, you have to think about it differently. You can't just do an extract, you know, dump the data out to some sort of information loaded somewhere. You have to kinda think about the architecture change, how you do the processing, do it more in memory and focus on a more performance version.


So, what does that mean and what does that look like? So, one key tenent to get to the problem with the cloud is, that things have to be easier to set up. You know, that screen there, it's just some screenshots from how we do it, but it's, you know, 1, 2, 3, kinda pick your source and target, pick what you want to do, you want to do one time CDC and then just go. It needs to be no harder than that, you know? I know we just, you know, saw the presentation from Mike and he talked about how easy it was for people to get started with Cloudant. It's the same type of thing, you have to deal with, kinda get going in a few steps otherwise you will start losing the value of it. When you think about the monitoring and control of it, there are some great companies out there, I know you're familiar with, like Tableau and others, who have done a great job in visualizing the end product of data and how to do it. But, you know, being able to visualize the movement process, the management or where's the data set on-premise, in the clouds and moving over, is there a lag, there is a vacancy. Having that viewpoint is critical and that's an important part of moving forward.


Another aspect that becomes important is the performance. You can't just rely on the standard FTP kinda two-way protocol that people have been using for years. As you move more and more data over, you have to have optimized, a file-channel protocol that is geared more towards, you know, one-directional movement most of the time after we think about how you break up tables and ship them out and move them over and you have to give people the flexibility to do that, otherwise you can't get it there in time and if you do that differently, think about it differently, you can get a 10x performance, but you have to rethink the technology.


And then lastly, as I mentioned earlier, you know, you have got a lot different places that databases exist today. So, you got to be able to work with all those and offer the widest kind of amount of support so that people can get onto the cloud. So, what does that mean for users and, you know, and those who are out there who wanted, two kind of quick cases of how people had challenges getting to the cloud, see the value, but then are able to do that if they have the right toolset.


So, one company that we work with, Etix, they do online ticketing, major provider in this space and I know Robin talked about data center offload is kind of a key in this case for the cloud. This is exactly what they are trying to do. They were trying to load and sync their data from Oracle on-premise to Redshift and do that in a timely fashion. And the interesting thing is, you know, go back to what Gilbert said, you know, it's really tough about on-boarding being an issue. They could see the intrinsic value of Redshift, they could see the cost savings, they could see all the advanced analytics that they quickly start doing that they continue for, they knew that value, but there was a roadblock to getting there. In this case, they looked at it and said, "Well, I see the value of Redshift, but it's gonna take them, you know, three months, development effort and time and, you know, maybe hiring the DBA and doing all this extra work to get there." So, there is a real block in the path to do it. Once you have the right toolset to do that, the right data integration capability to do that, they were able to go down from, you know, months of planning to literally just get going in minutes, and that's again lowering that barrier of getting people onto the cloud, we need to have the right capabilities to deliver on the promise.


The last, you know, slide I have here, and kind of another use case is, you know, we've worked with other companies, Philips, you know, well known in many spaces, we work with their health-care division and again, they were trying to go from an on-premise source over to Redshift, in this case SQL Server, and they knew the value, they knew all the analytics, they could do on it and they had done some testing on it, but they saw that without having the right tools, this is something that was gonna take them, you know, weeks and they had been spending actually weeks spinning their wheels and trying to get things moved over once they had the right tools that simplify, get it moved over quickly, they were able to go down and start loading in less than an hour, you know, over 30 million records. So, the real time went from couple of months to about two hours for them. And then they were able to do the things that they wanted to do. They didn't have to focus on the data loading, they could focus on the operational support. They got a much better matrix for all these care, cost and operations. So, you think about the whole challenge, you know, we design that spaces, enabling the data movement and now more than ever with the cloud when you think of it being kind of a remote place to pick your data, you know, this becomes an area that, you know, more and more people need to solve, to take advantage of what's out there. So, that's an overview of what we do and with that I will pass it back to you, Eric.


Eric Kavanagh: Okay. That sounds great. We've got a good amount of time here. We'll go a bit long to get to some of your good questions, folks. So, feel free to send your questions and I've got a few questions myself.


Lawrence, I guess I will start off with you. You guys have been in this space of kinda supercharging the movement of data for a while and you have been watching the cloud very carefully and I've really been kinda surprised at how long it's taken major enterprises, Fortune 1000 companies to fully embrace cloud. I mean, there are, of course, pockets of severe interests, let's call it, in large organizations, but as a general rule, there's been a bit of a reluctance that is only starting to wane in the last year or so, at least from my perspective, but what do you see out there in terms of cloud adoption and readiness of the enterprise to use cloud computing?


Lawrence Schwartz: Sure, I think you are right. It has been a significant change and it's certainly taken time, you know, they have that joke about, you know, that successful - overnight sensation - or really overnight success, that really takes years in the making, and that's been true for the cloud, right? It's… you have seen that kick in the last year, but it's due to all the hard work of a lot of players like Amazon who have been doing this for years, you know, to get the service adopted, the kind of, you know, prove the metal and there's, you know, failures and problems to give the diversity and flexibility that they have, that's something that Redshift offers. So, I think the maturity has gotten there, the confidence has gotten there, you know, the… I think it's infiltrated into a lot of companies through small areas, you know, small use cases, small trials, kind of outside that kinda IT control and with that, you know, those successful kind of periphery projects have proven now, there's now more of a willingness to have the conversations about how that spread. And frankly, you know, there's been additional tool that has, you know, have also come out to make these easier, like what we do and, you know, there is that, not just move the data, but show the value of BI in the cloud, and showing that.


So, it's, in one way, it's an overnight or a big uptick in the last year, but a big part of that's been all the hard work of building up to that. So, now we as a company see a lot more adoption. It's as a business for what we do, it's grown quite a bit and the cloud, you know, we do a lot of on-premise to on-premise movement. Now, cloud shows up in a lot of the conversations as, you know, real business cases, real offloading cases out where a year ago was certainly, you know, just more exploratory. Now, they have got real projects to move. So, it's been nice to see that movement.


Eric Kavanagh: Okay. Ótimo. And Mike Miller, you had mentioned that you heard a couple of provocative statements that you wanted to comment on, so, by all means, what do you find interesting or what do you wanna talk about?


Mike Miller: Oh, I think Robin, he made a point, his second-to-last slide contrasting where innovation counts. The cloud will always be second best and I'd love to hear a little bit more about that because in my mind, if I was thinking about building, you know, an application or some new service, it's hard for me to think that my organization, no matter what they are, really wants to go engineer-to-engineer with Google, Amazon, IBM, Microsoft. So, I think maybe I misunderstood his point with that.


Eric Kavanagh: Interesting. Robin, Mike has thrown down the gauntlet. O que você acha?


Dr. Robin Bloor: Well, I mean the point here is that there are a number of situations that I've come across which… where people have gone into the cloud and walked back out and the reason they walked back out was, you know, when it came to actually having emotionally, this was performance driven, but the performance was actually the crux of the application is being built as they couldn't get the low latency they wanted and the cloud was of no use to them. And, you know, the situation was that, you know, actually going into the cloud, even if they were given the ability to measure behavior of the networks for them in the cloud and that workloads in the cloud with something they had absolutely no control over, and because of that, they couldn't create the tailor-made services that they were looking for, and that's a performance edge. I don't think there's anything in terms of, you know, coding that's going to be constricted, what you can do in the cloud. It's service level, it's a constriction… if that's part of where your critical capability is going to be, then the cloud is not going to be able to deliver it.


Mike Miller: Right. The… So, I appreciate that clarification. I do agree, actually, that transparency is one of the big things that here as desire right now from users across many different providers. So, I think you raised a very fair point. When it comes to performance, I think that traditionally it has been very hard to, you know, to go to a cloud provider or any given cloud provider and find exactly the hardware you are looking for, but it will noting kind of the upping the ante in the race to basically free storage between Google and Amazon and other competitors that it is and I think you see the pressure that puts on driving on the cost of SSD, flash, etc. So, I think that's a fun one to watch going forward.


Dr. Robin Bloor: Oh, absolutely correct, you know? I mean, I think there's one of the things that is actually happening is that the second wave is coming on. The first wave was this, you know, this wonderfully tailored services as long as, you know, it's a little bit Henry Ford; you can have it recolor as long as it is black, but, you know, even so, extreme reduction in certain kinds of costs of having the data center. Or, the second thing that happens is, having actually built these huge data centers out, they start these cloud operators, suddenly start discovering things that you can actually do. You couldn't do before because you didn't have the scale. So, there is, I think, a second wave which, to a certain extent, is going to make the cloud even more appealing.


Eric Kavanagh: Okay. Boa. Let me go ahead and bring Ashish as I am gonna go ahead and throw up your architecture slide here. We always love these kind of architecture slides that help people wrap their heads around what's going on. I guess, one thing that just jumps out at me is, of course, YARN. We talked about that on yesterday's briefing. YARN is not a small deal. For those of you who aren't familiar with this concept, it is "yet another resource negotiator." It's, really it's a very interesting development because what happened is in the Hadoop movement, YARN is kind of replacing the engine really, if you will. Our speaker from yesterday will refer to it as the operating system. It's like the new operating system of Hadoop, which of course, consists of the hybrid distributed file system underneath, which is basically storage when you get right down to it, and then MapReduce is what you used to have to use to use HDFS. MapReduce is an absurdly constraining environment in terms of how you get things done. So, the purpose of YARN was to make HDFS much more accessible and make the entire Hadoop ecosystem much more flexible and agile. So, Ashish, I am just gonna ask you in general, since you are mentioning YARN here, I am guessing that you guys are YARN compliant or certified. Can you kinda talk about what… how you see that change in the game for Hadoop and big data?


Ashish Thusoo: Yeah, sure. Absolutamente. So, I think, you know, there are two parts to… So, let me first talk about, you know, why YARN was done and then talk about how that potentially changes the game and what's fundamentally still is the same, you know, where it doesn't change the game. I think that's an important thing to realize also because many times you, you know, you get caught up on this hype of say, this is the new, shiny thing and, you know, everything is going to, you know, all the problems are going to go away and so on and so forth. So, but the primary thing is that, you know, the strength and the weakness of the MapReduce API was that it was a very simple API and essentially, any problem that you could structure around being a sorting problem could be represented in, you know, that API. And some problems are naturally, you know… can naturally be transformed into that and some problems, you know, you sort of, you know, once you have just MapReduce at your disposal then you try to fit into a sorting problem.


So, I think the latter is where YARN plays a role by expanding out those APIs by, you know, being able to compose, you know, maps and reductions and, you know, whole bunch of different types of APIs in terms of how the data can be distributed between these two stages, and so on and so forth. You just made that API that much more richer. So, now you have at your disposal, different ways of solving that same problem, right? So, you just don't have to, you know, be constrained by the API and the problem gets solved one way or the other like, you know, if you are, you know, trying to do an analytics, you know, workload, you can express that in MapReduce, you can express that in YARN. The big difference that happens, that starts to happen is, you know, in terms of, you know, the performance matrix that you start seeing, you know, once you start, say programming to YARN and in some cases, a newer set of things, for example, streaming analysis and so on and so forth starts becoming a reality when you start, you know, doing that, you know, those things in YARN.


So, those are the differences that, you know, that thing has brought into the ecosystem. I think it's much, the richness there is much more on the API side as opposed to it being another resource manager, especially in the cloud context. If you think about it in cloud context, the resource manager is actually your… the VMs that you bring up, you know, you have virt… you know, it's not necessarily… Again, this is a big difference between say, on-prem how you are running Hadoop clusters and how you are running in the cloud then, you know, you have like the constrained static set of machines, you want to distribute those machines amongst different resources and they were used for YARN there. But, in the cloud, you know, you can bring up machines left and right. And so, just from the perspective of being a resource manager, it probably doesn't have that, you know, that bigger need and specifically in the cloud, but from the perspective of providing these, you know, richness of APIs which allow you to, for example, the Hive is initiative they can now program Hive to not just to use MapReduce, but have much more richer plans of doing jobs and things like that. It brings those benefits to the ecosystem. I think that is where the true value of YARN belongs. And in the cloud context, definitely, it's not that interesting from the resource management point of view, but it's much more interesting in terms of what it enables other projects to do, in terms of, you know, workloads that now, it now can be used to be programmed on to your data or the previous workloads that can be done in a much more efficient way.


Eric Kavanagh: Right.


Ashish Thusoo: I had, you know, one more just, you know, adding to Mike, you know, there was another provocative thing which was said which is around and, you know, which was around, hey, treating the cloud as yet another data center. I think you… you know, that is one point of view which most companies, you know, look at and say, okay, you know, that's the easiest point of view actually to look at saying that, okay, you know, this is, you have bunch of machines on your, you know, you have compute, you have storage and you have networking on your on-prem data center and cloud provides the same thing out there. So, I am just going to do exactly the same thing that I am doing on my own on-prem data center and do the same thing in the cloud and viola - that's how it should work. What we have found out, you know, having been running the clouds for, the two clouds where, you know, you have the ability to provision VMs within a minute, the ability to use a highly scalable objects to store data and things like that. We have found that cloud actually, the cloud architecture and these inherent abilities actually enable different ways of doing things, you know, and this is what I have talked about in my slide as well, you know, the whole notion of… in just, you know, in… the perspective of just Hadoop, the whole notion of just running the static cluster versus on-demand dynamic clusters, that is something that you don't see happening in an on-prem data center, you know, versus, you know, true cloud where the, you know, there's a enough capacity to be able to support these types of workloads.


And so, I think there is definitely some shift needed. You know, the big fear for me is that if you just treat cloud as yet another data center, you actually… while you, you know, there are lot of other benefits, but there are lot of intrinsic benefits that you might ignore if you, you know, start doing that, security is another one, the way you deal with security and the cloud, there's a lot of differences in terms of how you would deal with, you know, in… from on-prem perspective and so on and so forth. Just wanted to add that in, from my perspective.


Eric Kavanagh: Sure. Sim. Sem problemas. We have one attendee asking about various types of use cases like logistics and specifically HR, so I threw up this website of Workday, wanted to make a couple of comments on that, and then Gilbert, maybe I will bring you in to comment on the whole concept of architecture. So, in terms of HR, I actually heard a rather well, I will call it, let's say comment from an analyst a couple of months ago, a few months ago I suppose, about going to the cloud for Human Resources. I have been doing some research on this to know lot of HR-type functions are being outsourced to the cloud, certainly stuff like payroll is fairly easy to outsource these days, benefits programs and insurance, that kind of thing, but there is a real serious caveat to keep in mind and Gilbert, this is what I want you to comment on from an architectural perspective, which is you have to be very careful about when you are moving to the cloud for some kind of critical business service because you either want to be very strategic and very thoughtful, meaning you go through the process of making sure that you understand what's going on in the cloud and what's staying on-premise, and there is the folk from Attunity will tell you that truly one of the things they specialize in is making those connections such that they provide the kind of connectivity you need because what's happening with some organizations is they go and they will use Workday for example, to put some of their HR stuff to the cloud, but they don't do it all or they don't do enough or they don't think through it enough, and what happens then? Then they want to happen to manage the cloud environment and their original on-premises environment as well, which means, guess what? He just increased your cost, you doubled your workload and you created lots and lots of headaches for people, and that's usually when someone gets fired and then the guy who comes in has a real mess to clean up. So, you really do have to think through the architecture of the data and the systems and the processes and make sure you dot all your i's and cross all your t's and with that, I will throw it over to Gilbert for comments. I am guessing it will be with that, but maybe not.


Gilbert Van Cutsem: Alright. Sim. So, just another example of something similar, just yesterday happened to me. So, I lost one of my doctors because he went out of business. Eu não sei. It sounds amazing. He was a chiropractor and he went out of business. I don't know why, but, the thing was this - I have no chiropractor and I like to go to a chiropractor, you know, occasionally. So, I find a new one and it's close to, you know, close by and all that. It's all good. And so, they go, as usual, you have to do all the paperwork and let us know if blah, blah, blah. But, the good news is we have a new system because, you know, we're on the Web now, in the cloud. It's all cool. I go like, okay, you know, and they send me a link and I have to do all the paperwork online, which is fine and I put all kinds of things in there about, kind of secret like, you know, social security numbers and that type of stuff and who I am, how old I am… all my details. I put it all there and I submit because of course, I do believe in technology.


And then I walk up to the office, the next day for my first appointment and they go like, "Did you do the form?" I go like, "Yes, Ma'am, I did." "Okay. Then we will go and find it." I go like, "Well, I did do it." And she goes, "Yes, we know because you are the fifth person today to walk in, to walk up to me and complain about that's not finding the form." And I go like, "But, you can't be serious about that. This is pretty confidential information. Where is it?" This happened to me yesterday, yeah, which brings back the whole issue and the whole idea of who owns the data really, right?


I know you move to the cloud and people get onboard it into a new system like in this case, my chiropractor and they subscribe to a new system. It's in the cloud, it's all safe, it's fully multi-tenant, they used to have it on-premise system, all the data was moved into the new system, but now apparently, they can't get it out.


Eric Kavanagh: Yeah. Isso não é bom.


Gilbert Van Cutsem: So, I don't know where my data is and assume she gets really mad, right? She goes like, "Oh, this is impossible. I pay you money and my customers are, my patients, sorry, are unhappy and with the data is gone, I wanna get away from you. I wanna go to a different system maybe also in the cloud, right?" How do you then move the data of your patients in this case, the data your business owns, to another system? How do I get it out first of all and then load it again? I am sure ETL in the cloud is an answer somehow and we have experts on that, but it's not that easy.


Eric Kavanagh: Yeah, but that's exactly right and folks, I threw up this other slide here, this other, another screen to show you where you can find the archives. So, anytime you want to check out - oh, there's the inside of our website, I don't want to show you that. So, here is the main website and on the right column here you can see a different show. So, TechWise is right here. You click on that and on these different pages where we will actually post the archives. So, we do archive all these webcasts.


Actually, I wanna throw back over to Mike, I suppose, and then also to Lawrence to kinda comment on this story that Gilbert just told. So, Mike, there is some, kind of, now this is kind of a small-business concern. You guys are more focused on big business, but nonetheless, if a large company who works with you and they want to go somewhere else, how do you manage that movement of the data and securing the data and so forth?


Mike Miller: Yeah. Essa é uma pergunta muito boa. It's one that used to come up a lot more often than it does now in sales calls, which I find to be an interesting anecdotal piece of evidence for a call. You know, I think that first of all, we are talking about a lot technologies, or at least employment models that are relatively new. This is very early in the cloud, right? We are talking about things like cloud, or in the case of data, we are talking about analytics services like Hadoop for databases and then NoSQL or NewSQL formats. You know, these are fundamentally new technologies and especially around things like, Hadoop and NoSQL, all of the ancillary services, the connectors, right, the… you know, if I want to find somebody that consults on Oracle, that's something I can find, but that entire ecosystem is just kinda spinning up right now.


So, it's getting easier day over day to say, okay, you know, give me a service that can read from 'x' traditional system, put it into Cloudant and do something with it and then put it back into 'y' traditional system, right? So, now they are very, you know, there are quite a few those things and it's actually more challenging, I think, for a typical user to understand what is the best choice, right, if I want to connect all the new technologies on-prem and then in the cloud.


So, I think as a cloud vendor, it's really on us to be very opinionated about that and to help walk users through the landscape of possibilities because the shift's a lot of new and I think that the average user, whether it's a CTO, CIO or whether it's actually developer, is coming up that learning curve fairly quickly. I think that a lot of the kind of baseline stuff is being worked out, cross-cloud connectors and, you know, taking away the really most basic worries about say, you know, bandwidth cost and whether or not you are going out on the wide area network versus staying on, you know, VPN the entire time. A lot of those things have been kinda abstracted away and what is the true promise of the cloud.


But, in general, I think you are also seeing, you know, that anecdote that we heard was, you know, something that is probably isomorphic to, you know, what will happen to your buying into a brand, you know, in a past lifetime, you know, what happens if that brand doesn't deliver, how much can I really trust that brand? I think you are seeing exactly the same thing happen in the cloud and, you know, I think that companies like Microsoft, Amazon, IBM and Google are, you know, very much stepping up and saying that there will at least be multiple pillars of trust and making sure that you are not going in with a company that's going to dry up and swallow your data, or worse, lose it or distribute it, right? And so, they are, at least, they are independable and they are anchoring, you know, the development of such ecosystem. But, I say to close, it's very early and a lot of that tooling is just getting started and, you know, I think you are going to see consulting services, you know, really putting a lot of focus on that in the very near term.


Eric Kavanagh: Yeah. That's a really, really good comment you just made there. I like that "pillars of trust" concept because the other thing to keep in mind here is you do once again have a number of fierce competitors vying for market share and for IT span, it's just like the old days all over again. Really, in the old days, by which I mean last year, you had IBM and Oracle and Microsoft and SAP and then Computer Associates and Informatica and all these companies, Teradata, etc. In the new world, now you have got, of course, Microsoft with their Du Jour, you have got Google, you have got Amazon Web Services, you know, you have Facebook in certain context. So, you have all these companies that are not necessarily so excited about working with each other, but you do have things like APIs. And so, one of the nice things that APIs really are crystallizing into the connectors that hold together the larger cloud, I suppose, and I want to throw up a slide for Lawrence to kinda comment on all this.


Yeah, Lawrence, obviously, you guys have specialized in the space for a while. So, I think you do have awesome advantage over maybe some newcomers. But, nonetheless, these are all very serious concerns because how data gets stored in the cloud is different than how it gets stored on-premise. Then I think that Mike makes a really good point that this whole space is just starting to take shape and it's gonna take a while for things to seriously fall into place and to crystallize. So, what's some advice that you have for companies that you… I guess, you basically concur with Mike, or what do you think?


Lawrence Schwartz: Yeah. I think it's, you know, what we see is when people are taking advantage of the cloud for a lot of use cases as compared to on-premise, you know, they are looking at kind of, you know, two different things. One is, they are looking at, you know, as we talked about this a little bit earlier, how do I… how does it incrementally add value to what I do, how do I, you know, how is it kind of an add-on? And so, you know, when back to when I talked about the Etix as a company where, you know, they are not moving all their operations over to Redshift, you know, yet per say, but they're saying, "I do a lot of work on Oracle, I wanna offer some of this to some kind of analytics from different environments, you know, kinda figure out, maybe do some sandbox stuff there, and, you know, and then learn about my business that way, and that way they can kind of carve out what they want, move it over there and do the work and, you know, it's less of a concern with moving, you know, everything over and all the records and whatnot. So, I think they look at that as one way that to take advantage of it with having less issues.


I think the other thing is people are also looking at these cases that are and aren't excellent fit for the cloud that are very, very hard to do in other ways. So, I will take another example, you know, we work with a company called, you know, iN DEMAND. They are video on-demand player. They do this work for Comcast and all of this and they will actually, you know, take the data that they are working with, they will take the media files and they will supply it to the cloud for doing their processing, do their processing there, and then they will consume it back for their on-premise customers. And then, you know, that gets upstairs to third parties that consume reviews. So, it's, you know, if you want to think about how the company is approaching it, it's, you know, how do I get my… how do I add value, how do I maybe not move the whole business at first, how do I get the right use cases, how do I add incremental value to what I do? And that helps kinda build about the confidence on what they are doing and as part of the process, and of course, you know, a key piece of that is, you know, making sure that they can do that securely and reliably and, you know, we make sure to the latest levels of encryption and other things to take care of that as much as we can on the transport side. But, that's how I think a lot of companies are approaching the problem.


Eric Kavanagh: Okay. Boa. And maybe Ashish, I will throw one last question over to you. I am just throwing up, actually, I like your architecture slide. Even this slide I think is pretty neat. So, one of the questions in, you know, HDFS of course, by design the default is to save every piece of data three times. You can adjust that, of course, you can make it twice, you can make it four times, that does provide some overhead over time, obviously, but it is a way of backing up data. Anyway, that was the whole idea, one of the key ideas, right, from HDFS originally is redundancy, is not wanting to lose data. I've kind of been wondering how that's going to affect things like replication servers, quite frankly, when Hadoop does that natively.


But, one of the attendees is asking - "Can you request physical backups like tape for your cloud data? I read of a company that had their cloud management console hacked and their data and online backups trashed."


You know, we are hearing about these breaches all the time, they are getting more and more serious, they are killing major brands like Target, like Home Depot, etc. So, security is an issue and backup and restore is an issue. Can you kinda talk about how you guys address things like backup and restore and security?


Ashish Thusoo: Yeah, sure. So, we… So, I will talk about that and talk about HDFS first. So, as far as Qubole is concerned, you know, we… since we work on the cloud, we use the objects store there to store data. So, again, this is one of the other key differences why, you know, big data service on the cloud becomes different from on-prem. On-prem, we have always talked about, you know, HDFS and so on and so forth, but if you go to the cloud, a lot of the data is actually stored in their object stores. For example, that could be an S3 on AWS, Google cloud storage on Google Cloud, on Google Compute Engine, and so on and so forth.


Now, many of these object stores have built-in capabilities of providing you things, you know, these object stores, by the way, you know, one of the big differentiators from real clouds to actually your own data center is the presence of these object stores and the reason that these object stores are cool pieces of technology, you know, they are able to provide you very cheap storage and along with that they are able to provide you things like, you know, having the ability to actually have a disaster recovery thing built in and, you know, as part of that interface, you don't have to think about it. And also, they have tiered, you know, there is tiering there as well. For example, S3 has high availability and it's online access, but it's much more expensive. It's more expensive than say, a glacier storage on AWS, which is low, you know, it gives you, you know, the turnaround time is like four hours or something like that and it's much cheaper. So, you start thinking of, you know, those types of services. I think cloud providers are essentially providing those types of services to augment the need for things like tapes and so on and so forth. And also, to provide you disaster recovery or rather, you know, replication built in into these systems so that, you know, you are protected from disasters, regional disasters and things like that.


So, that is what Qubole heavily, you know, depends upon and the great thing is that a lot of… all the cloud providers are providing this. These are fundamentally very difficult problems to solve and by being built into some of the object stores that these cloud providers provide, you know, that is one more additional reason of, you know, storing this data, you know, in some of these object stores and using the cloud for that as opposed to trying to, you know, figure out, you know, replication, running two Hadoop clusters across different, you know, regions and, you know, trying to replicate data from HDFS from one region to the other, which is doable, we did that a lot when I was back at Facebook running this stuff there, but, you know, fundamentally, the object stores in the cloud just made it that much more easy.


Eric Kavanagh: Okay. Ótimo! Well, folks, we've burned through an hour and 15 minutes or so, a lot of great questions there and a lot of great presentations. Thank you so much to all of our vendors today and of course, to both of our analysts on the show today. A big thank you, of course, to Qubole, Cloudant and Attunity. We are gonna put the archive up at insideanalysis.com. I showed you where that goes, and big thanks to our friends at Techopedia as well.


So, folks, thank you again for your time and attention. This concludes Episode 3 of TechWise, our relatively new show. There is Episode 4 coming up pretty soon. It's gonna be on the big data ecosystem. So, watch for information on all that. And then till then, folks, thank you so much. We will catch up with you next time. Cuidar. Tchau tchau.

O imperativo da nuvem - o que, por que, quando e como - episódio 3 do techwise